Cytoplasmic ATP Inhibition of CLC-1 Is Enhanced by Low pH

نویسندگان

  • Pang-Yen Tseng
  • Brett Bennetts
  • Tsung-Yu Chen
چکیده

The CLC-1 Cl(-) channel is abundantly expressed on the plasma membrane of muscle cells, and the membrane potential of muscle cells is largely controlled by the activity of this Cl(-) channel. Previous studies showed that low intracellular pH increases the overall open probability of recombinant CLC-1 channels in various expression systems. Low intracellular pH, however, is known to inhibit the Cl(-) conductance on the native muscle membrane, contradicting the findings from the recombinant CLC-1 channels in expressed systems. Here we show that in the presence of physiological concentrations of ATP, reduction of the intracellular pH indeed inhibits the expressed CLC-1, mostly by decreasing the open probability of the common gate of the channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Muscle Chloride Channel ClC-1 Is Not Directly Regulated by Intracellular ATP

ClC-1 belongs to the gene family of CLC Cl(-) channels and Cl(-)/H(+) antiporters. It is the major skeletal muscle chloride channel and is mutated in dominant and recessive myotonia. In addition to the membrane-embedded part, all mammalian CLC proteins possess a large cytoplasmic C-terminal domain that bears two so-called CBS (from cystathionine-beta-synthase) domains. Several studies indicate ...

متن کامل

Binding of ATP to the CBS domains in the C-terminal region of CLC-1

The common gating of CLC-1 has been shown to be inhibited by intracellular adenosine triphosphate (ATP) in acidic pH conditions. Such modulation is thought to be mediated by direct binding of ATP to the cystathionine β-synthase (CBS) domains at the C-terminal cytoplasmic region of CLC-1. Guided by the crystal structure of the C-terminal domain of CLC-5, we constructed a homology model of CLC-1'...

متن کامل

Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.

ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a ma...

متن کامل

ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles.

Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO(3)(-)/H(+) exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine beta-synthetase motifs in all eukaryotic members of the CLC f...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2007